Udowodnij, że każda liczba całkowita k, która przy dzieleniu przez 7 daje resztę 2, ma tę własność, że reszta z dzielenia liczby 3k^2 przez 7 jest równa 5.Za http://matfiz24.plZadanie 5 z matury z matematyki z 06.06.2012 polegające na wskazaniu właściwego wykresu funkcji kwadratowej podaje jako cztery parabole. Za W tym filmiku znajdziesz rozwiązanie zadania 12 z matury z fizyki z maja 2022 roku, dotyczącego fizyki jądrowej. Pozostałe zadania z tej matury znajdziesz ro http://matfiz24.plTworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 45°. Wysokość tego stożka jest równa W trójkącie ABC poprowadzono dwusieczne kątów A i B. Dwusieczne te przecinają się w punkcie P. Uzasadnij, że kąt APB jest rozwarty. Oblicz ile jest liczb naturalnych ośmiocyfrowych, takich że iloczyn cyfr w ich zapisie dziesiętnym jest równy 12Rozwiązanie zadania 8. Matura z matematyki, C Uzasadnij, że jeżeli liczba całkowita nie dzieli się przez 3, to jej kwadrat przy dzieleniu przez 3 daje resztę 1.Zadanie 28 próbna nowa matura z matematyki jUDM. Ułamek √5+2/√5−2 jest równy:Chcę dostęp do Akademii! Liczbami spełniającymi równanie |2x+3|=5 są:Chcę dostęp do Akademii! Równanie (x+5)(x−3)(x2+1)=0 ma:Chcę dostęp do Akademii! Marża równa 1,5% kwoty pożyczonego kapitału była równa 3000zł. Wynika stąd, że pożyczono:Chcę dostęp do Akademii! Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji y=x2+2x−3. Wskaż ten dostęp do Akademii! Wierzchołkiem paraboli będącej wykresem funkcji określonej wzorem f(x)=x2−4x+4 jest punkt o współrzędnych:Chcę dostęp do Akademii! Jeden kąt trójkąta ma miarę 54°. Z pozostałych dwóch kątów tego trójkąta jeden jest 6 razy większy od drugiego. Miary pozostałych kątów są równe:Chcę dostęp do Akademii! Krótszy bok prostokąta ma długość 6. Kąt między przekątną prostokąta i dłuższym bokiem ma miarę 30°. Dłuższy bok prostokąta ma długość:Chcę dostęp do Akademii! Cięciwa okręgu ma długość 8cm i jest oddalona od jego środka o 3cm. Promień tego okręgu ma długość:Chcę dostęp do Akademii! Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę:Chcę dostęp do Akademii! Pięciokąt ABCDE jest foremny. Wskaż trójkąt przystający do trójkąta ECD:Chcę dostęp do Akademii! Punkt O jest środkiem okręgu przedstawionego na rysunku. Równanie tego okręgu ma postać:Chcę dostęp do Akademii! Wyrażenie 3x+1/x−2−2x−1/x+3 jest równe:Chcę dostęp do Akademii! Ciąg (an) jest określony wzorem an=√2n+4 dla n≥1. Wówczas:Chcę dostęp do Akademii! Ciąg (2√2,4,a) jest geometryczny. Wówczas:Chcę dostęp do Akademii! Kąt α jest ostry i tgα=1. Wówczas:Chcę dostęp do Akademii! Wiadomo, że dziedziną funkcji f określonej wzorem f(x)=x−7/2x+a jest zbiór (−∞,2)∪(2,+∞). Wówczas:Chcę dostęp do Akademii! Jeden z rysunków przedstawia wykres funkcji liniowej f(x)=ax+b, gdzie a>0 i bChcę dostęp do Akademii! Punkt S=(2,7) jest środkiem odcinka AB, w którym A=(−1,3). Punkt B ma współrzędne:Chcę dostęp do Akademii! W kolejnych sześciu rzutach kostką otrzymano następujące wyniki: 6,3,1,2,5,5. Mediana tych wyników jest równa:Chcę dostęp do Akademii! Równość (a+2√2)2=a2+28√2+8 zachodzi dla:Chcę dostęp do Akademii! Trójkąt prostokątny o przyprostokątnych 4 i 6 obracamy wokół dłuższej przyprostokątnej. Objętość powstałego stożka jest równa:Chcę dostęp do Akademii! Jeżeli A i B są zdarzeniami losowymi, B′ jest zdarzeniem przeciwnym do B, P(A)=0,3, P(B′)=0,4 oraz A∩B=∅, to P(A∪B) jest równe:Chcę dostęp do Akademii! Przekrój osiowy walca jest kwadratem o boku a. Jeżeli r oznacza promień podstawy walca, h oznacza wysokość walca, to:Chcę dostęp do Akademii! Rozwiąż nierówność x2−3x−10Chcę dostęp do Akademii! Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej dostęp do Akademii! Podstawy trapezu prostokątnego mają długości 6 i 10 oraz tangens jego kąta ostrego jest równy 3. Oblicz pole tego dostęp do Akademii! Uzasadnij, że jeżeli α jest kątem ostrym, to sin4α+cos2α=sin2α+ dostęp do Akademii! Uzasadnij, że suma kwadratów trzech kolejnych liczb całkowitych przy dzieleniu przez 3 daje resztę dostęp do Akademii! Suma Sn=a1+a2+…+an początkowych n wyrazów pewnego ciągu arytmetycznego (an) jest określona wzorem Sn=n2−2n. Wyznacz wzór na n-ty wyraz tego dostęp do Akademii! Dany jest romb, którego kąt ostry ma miarę 45°, a jego pole jest równe 502–√. Oblicz wysokość tego dostęp do Akademii! Punkty A=(2,11), B=(8,23), C=(6,14) są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz współrzędne punktu dostęp do Akademii! Oblicz, ile jest liczb naturalnych pięciocyfrowych, w zapisie których nie występuje zero, jest dokładnie jedna cyfra 7 i dokładnie jedna cyfra dostęp do Akademii! Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD, BE i CF (zobacz rysunek). Długość krawędzi podstawy AB jest równa 8, a pole trójkąta ABF jest równe 52. Oblicz objętość tego dostęp do Akademii! W trójkącie równoramiennym ABC dane są |AC|=|BC|=5 oraz wysokość |CD|=2. Podstawa AB tego trójkąta ma długość:Chcę dostęp do Akademii! Cenę nart obniżono o 20%, a po miesiącu nową cenę obniżono o dalsze 30%. W wyniku obu obniżek cena nart zmniejszyła się o:Chcę dostęp do Akademii! Liczba (3)√(-8^-1)⋅16^(3/4) jest równa:Chcę dostęp do Akademii! Liczba (3−√2)^2+4(2−√2) jest równa:Chcę dostęp do Akademii! Iloczyn 2log139 jest równy:Chcę dostęp do Akademii! 0 . Wówczas spełniony jest warunek A. f(1) = 1B. f(2) = 2C. f(3) = 3D. f(4) = 4 Treść dostępna po opłaceniu abonamentu. Zadanie 9. (1 pkt). Wskaż wykres funkcji, która w przedziale ma dokładnie jedno miejsce zerowe. Treść dostępna po opłaceniu abonamentu. Zadanie 10. (1 pkt). Liczba tg30° – sin 30° jest równa \[A.\sqrt 3 – 1\]\[B. – \frac{{\sqrt 3 }}{6}\]\[C.\frac{{\sqrt 3 – 1}}{6}\]\[D.\frac{{2\sqrt 3 – 3}}{6}\] Treść dostępna po opłaceniu abonamentu. Zadanie 11. (1 pkt). W trójkącie prostokątnym ABC odcinek AB jest przeciwprostokątną i |AB|=13 oraz |BC|=12 . Wówczas sinus kąta ABC jest równy \[A.\frac{{12}}{{13}}\]\[B.\frac{5}{{13}}\]\[C.\frac{5}{{12}}\]\[D.\frac{{13}}{{12}}\] Treść dostępna po opłaceniu abonamentu. Zadanie 12. (1 pkt). W trójkącie równoramiennym ABC dane są |AC| = |BC| = 5 oraz wysokość |CD| = 2 . Podstawa AB tego trójkąta ma długość \[ {21}\]\[ {29}\]\[ Treść dostępna po opłaceniu abonamentu. Zadanie 13. (1 pkt). W trójkącie prostokątnym dwa dłuższe boki mają długości 5 i 7. Obwód tego trójkąta jest równy \[ 6\]\[ 6\]\[ + 4\sqrt 6\]\[ + 2\sqrt 6\] Treść dostępna po opłaceniu abonamentu. Zadanie 14. (1 pkt). Odcinki AB i CD są równoległe i |AB|=5 , |AC|=2 , |CD|=7 (zobacz rysunek). Długość odcinka AE jest równa \[A.\frac{{10}}{7}\]\[B.\frac{{14}}{5}\]\[ Treść dostępna po opłaceniu abonamentu. Zadanie 15. (1 pkt). Pole kwadratu wpisanego w okrąg o promieniu 5 jest równe Treść dostępna po opłaceniu abonamentu. Zadanie 16. (1 pkt). Punkty A, B, C, D dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego ACD jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 17. (1 pkt). Miary kątów czworokąta tworzą ciąg arytmetyczny o różnicy 20°. Najmniejszy kąt tego czworokąta ma miarę A. 40°B. 50°C. 60° D. 70° Treść dostępna po opłaceniu abonamentu. Zadanie 18. (1 pkt). Dany jest ciąg \(\left( {{a_n}} \right)\) określony wzorem \({a_n} = {\left( { – 1} \right)^{\;n}} \cdot \frac{{2 – n}}{{{n^2}}}\) dla n≥1. Wówczas wyraz \({a_5}\) tego ciągu jest równy \[A. – \frac{3}{{25}}\]\[B.\frac{3}{{25}}\]\[C. – \frac{7}{{25}}\]\[D.\frac{7}{{25}}\] Treść dostępna po opłaceniu abonamentu. Zadanie 19. (1 pkt). Pole powierzchni jednej ściany sześcianu jest równe 4. Objętość tego sześcianu jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 20. (1 pkt). Tworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 45°. Wysokość tego stożka jest równa \[ 2\]\[ \[ 2\] \[ Treść dostępna po opłaceniu abonamentu. Zadanie 21. (1 pkt). Wskaż równanie prostej równoległej do prostej o równaniu 3x-6y+7=0 . \[ = \frac{1}{2}x\]\[ = – \frac{1}{2}x\]\[ = 2x\]\[ = – 2x\] Treść dostępna po opłaceniu abonamentu. Zadanie 22. (1 pkt). Punkt A ma współrzędne (5,2012). Punkt B jest symetryczny do punktu A względem osi Ox, a punkt C jest symetryczny do punktu B względem osi Oy. Punkt C ma współrzędne A. (-5,-2012) B. (-2012,-5)C. (-5, 2012)D. (-2012,5) Treść dostępna po opłaceniu abonamentu. Zadanie 23. (1 pkt). Na okręgu o równaniu \({\left( {x – 2} \right)^2} + {\left( {y + 7} \right)^2} = 4\) leży punkt A. A = (-2,5) B. B = (2,-5) C. C = (2,-7)D. D = (7,-2) Treść dostępna po opłaceniu abonamentu. Zadanie 24. (1 pkt). Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w 10 kolorach, jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 25. (1 pkt). Średnia arytmetyczna cen sześciu akcji na giełdzie jest równa 500 zł. Za pięć z tych akcji zapłacono 2300 zł. Cena szóstej akcji jest równa A. 400 złB. 500 złC. 600 złD. 700 zł Treść dostępna po opłaceniu abonamentu. Zadanie 26. (2 pkt). Rozwiąż nierówność \({x^2} + 8x + 15 > 0\) Treść dostępna po opłaceniu abonamentu. Zadanie 27. (2 pkt). Uzasadnij, że jeśli liczby rzeczywiste a, b, c spełniają nierówności 0 \frac{{a + b}}{2}\] Treść dostępna po opłaceniu abonamentu. Zadanie 28. (2 pkt). Liczby \({x_1} = – 4\) i \({x_2} = 3\) są pierwiastkami wielomianu \(W\left( x \right) = {x^3} + 4{x^2} – 9x – 36\). Oblicz trzeci pierwiastek tego wielomianu. Treść dostępna po opłaceniu abonamentu. Zadanie 29. (2 pkt). Wyznacz równanie symetralnej odcinka o końcach A=(-2,2) i B=(2,10). Treść dostępna po opłaceniu abonamentu. Zadanie 30. (2 pkt). W trójkącie ABC poprowadzono dwusieczne kątów A i B. Dwusieczne te przecinają się w punkcie P. Uzasadnij, że kąt APB jest rozwarty. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (2 pkt). Ze zbioru liczb {1,2,3,4,5,6,7} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A, polegającego na wylosowaniu liczb, których iloczyn jest podzielny przez 6. Treść dostępna po opłaceniu abonamentu. Zadanie 32. (4 pkt). Ciąg (9, x,19) jest arytmetyczny, a ciąg (x, 42, y, z) jest geometryczny. Oblicz x, y oraz z. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (4 pkt). W graniastosłupie prawidłowym czworokątnym ABCDEFGH przekątna AC podstawy ma długość 4. Kąt ACE jest równy 60° . Oblicz objętość ostrosłupa ABCDE przedstawionego na poniższym rysunku. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (5 pkt). Miasto A i miasto B łączy linia kolejowa długości 210 km. Średnia prędkość pociągu pospiesznego na tej trasie jest o 24 km/h większa od średniej prędkości pociągu osobowego. Pociąg pospieszny pokonuje tę trasę o 1 godzinę krócej niż pociąg osobowy. Oblicz czas pokonania tej drogi przez pociąg pospieszny. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z Na schemacie przedstawiono proces translacji. Na podstawie analizy schematu i własnej wiedzy wykonaj poniższe polecenia. a) Oceń prawdziwość zdań dotyczących procesu translacji. Wpisz w odpowiednich miejscach tabeli literę P, jeśli zdanie jest prawdziwe, lub literę F, jeśli zdanie jest fałszywe. P/F 1. Każdy tRNA posiada wolny koniec, do którego przyłączany jest aminokwas. 2. Kolejność kodonów na mRNA decyduje o kolejności aminokwasów w wytwarzanym białku. 3. Proces translacji zachodzi w jądrze komórkowym. b) Podaj zestawienie nukleotydów w antykodonie tRNA przenoszącym tyrozynę (Tyr). c) Podaj znaczenie obecności porów w otoczce jądrowej dla procesu translacji. a) (0 – 1) Korzystanie z informacji Scharakteryzowanie procesu translacji na podstawie schematu ( Poprawna odpowiedź: 1 – P, 2 – P, 3 – F 1 p. – za poprawną ocenę wszystkich (trzech) informacji 0 p. – za niepoprawną ocenę jednej lub dwóch, lub wszystkich informacji b) (0 – 1) Tworzenie informacji Zinterpretowanie informacji przedstawionych na schemacie ( Poprawna odpowiedź: antykodon: AUG lub GUA 1 p. – za poprawne podanie zestawienia nukleotydów w antykodonie tRNA przenoszącym tyrozynę 0 p. – za odpowiedź niepoprawną c) (0−1) Wiadomości i rozumienie Wyjaśnienie funkcji elementów strukturalnych jądra komórkowego w procesie translacji ( Przykład poprawnej odpowiedzi: Poprzez pory w błonie jądrowej przedostają się do cytoplazmy podjednostki rybosomów oraz kwasy rybonukleinowe biorące udział w translacji (mRNA, tRNA). 1 p. – za poprawne wyjaśnienie znaczenia porów w otoczce jądrowej 0 p. – za odpowiedź niepoprawną, np. odnoszącą się do rRNA Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Cenę nart obniżono o \(20\%\), a po miesiącu nową cenę obniżono o dalsze \(30\%\). W wyniku obu obniżek cena nart zmniejszyła się o A.\(44\% \) B.\(50\% \) C.\(56\% \) D.\(60\% \) ALiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczba \( {(3-\sqrt{2})}^{2}+4(2-\sqrt{2}) \) jest równa A.\(19-10\sqrt{2} \) B.\(17-4\sqrt{2} \) C.\(15+14\sqrt{2} \) D.\(19+6\sqrt{2} \) AIloczyn \( 2\cdot \log_{\frac{1}{3}}9 \) jest równy A.\(-6 \) B.\(-4 \) C.\(-1 \) D.\(1 \) BWskaż liczbę, która spełnia równanie \( |3x+1|=4x \). A.\(x=-1 \) B.\(x=1 \) C.\(x=2 \) D.\(x=-2 \) BLiczby \( {x}_{1}, {x}_{2} \) są różnymi rozwiązaniami równania \( 2x^2+3x-7=0 \). Suma \( {x}_{1}+{x}_{2} \) jest równa A.\(-\frac{7}{2} \) B.\(-\frac{7}{4} \) C.\(-\frac{3}{2} \) D.\(-\frac{3}{4} \) CMiejscami zerowymi funkcji kwadratowej \( y = -3(x-7)(x+2) \) są A.\(x=7, x=-2 \) B.\(x=-7, x=-2 \) C.\(x=7, x=2 \) D.\(x=-7, x=2 \) AFunkcja liniowa \( f \) jest określona wzorem \( f(x)=ax+6 \), gdzie \( a>0 \). Wówczas spełniony jest warunek A.\(f(1)>1 \) B.\(f(2)=2 \) C.\(f(3)\lt 3 \) D.\(f(4)=4 \) AWskaż wykres funkcji, która w przedziale \( \langle -4, 4 \rangle \) ma dokładnie jedno miejsce zerowe. CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BW trójkącie równoramiennym \( ABC \) dane są \( |AC|=|BC|=5 \) oraz wysokość \( |CD|=2 \). Podstawa \( AB \) tego trójkąta ma długość A.\(6 \) B.\(2\sqrt{21} \) C.\(2\sqrt{29} \) D.\(14 \) BW trójkącie prostokątnym dwa dłuższe boki mają długości \(5\) i \(7\). Obwód tego trójkąta jest równy A.\(16\sqrt{6} \) B.\(14\sqrt{6} \) C.\(12+4\sqrt{6} \) D.\(12+2\sqrt{6} \) DOdcinki \(AB\) i \(CD\) są równoległe i \( |AB|=5, |AC|=2, |CD|=7 \) (zobacz rysunek). Długość odcinka \( AE \) jest równa A.\(\frac{10}{7} \) B.\(\frac{14}{5} \) C.\(3 \) D.\(5 \) DPole kwadratu wpisanego w okrąg o promieniu \( 5 \) jest równe A.\(25 \) B.\(50 \) C.\(75 \) D.\(100 \) BPunkty \(A, B, C, D\) dzielą okrąg na \(4\) równe łuki. Miara zaznaczonego na rysunku kąta wpisanego \(ACD\) jest równa A.\( 90^\circ \) B.\( 60^\circ \) C.\( 45^\circ \) D.\( 30^\circ \) CMiary kątów czworokąta tworzą ciąg arytmetyczny o różnicy \( 20^\circ \) . Najmniejszy kąt tego czworokąta ma miarę A.\(40^\circ \) B.\(50^\circ \) C.\(60^\circ \) D.\(70^\circ \) CDany jest ciąg \( (a_n) \) określony wzorem \( a_n=(-1)^n\cdot \frac{2-n}{n^2} \) dla \( n\ge 1 \). Wówczas wyraz \( a_5 \) tego ciągu jest równy A.\(-\frac{3}{25} \) B.\(\frac{3}{25} \) C.\(-\frac{7}{25} \) D.\(\frac{7}{25} \) BPole powierzchni jednej ściany sześcianu jest równe \( 4 \). Objętość tego sześcianu jest równa A.\(6 \) B.\(8 \) C.\(24 \) D.\(64 \) BTworząca stożka ma długość \( 4 \) i jest nachylona do płaszczyzny podstawy pod kątem \( 45^\circ \). Wysokość tego stożka jest równa A.\(2\sqrt{2} \) B.\(16\pi \) C.\(4\sqrt{2} \) D.\(8\pi \) AWskaż równanie prostej równoległej do prostej o równaniu \( 3x-6y+7=0 \) A.\(y=\frac{1}{2}x \) B.\(y=-\frac{1}{2}x \) C.\(y=2x \) D.\(y=-2x \) APunkt \( A \) ma współrzędne \( (5, 2012) \). Punkt \( B \) jest symetryczny do punktu \( A \) względem osi \( Ox \), a punkt \( C \) jest symetryczny do punktu \( B \) względem osi \( Oy \) . Punkt \( C \) ma współrzędne A.\((-5;-2012) \) B.\((-2012;-5) \) C.\((-5;2012) \) D.\((-2012;5) \) ANa okręgu o równaniu \( (x-2)^2+(y+7)^2=4 \) leży punkt A.\(A=(-2,5) \) B.\(B=(2,-5) \) C.\(C=(2,-7) \) D.\(D=(7,-2) \) BFlagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w \( 10 \) kolorach, jest równa A.\(100 \) B.\(99 \) C.\(90 \) D.\(19 \) CŚrednia arytmetyczna cen sześciu akcji na giełdzie jest równa \( 500 \) zł. Za pięć z tych akcji zapłacono \( 2300 \) zł. Cena szóstej akcji jest równa A.\(400 \) zł B.\(500 \) zł C.\(600 \) zł D.\(700 \) zł DRozwiąż nierówność \(x^2 + 8x + 15 > 0\).\(x\in (-\infty ;-5) \cup (-3;+\infty )\)Uzasadnij, że jeśli liczby rzeczywiste \( a, b, c \) spełniają nierówności \( 0 \lt a \lt b \lt c \), to \( \frac{a+b+c}{3}>\frac{a+b}{2} \).Liczby \(x_1 = -4\) i \(x_2 = 3\) są pierwiastkami wielomianu \(W(x) = x^3 + 4x^2 - 9x - 36\). Oblicz trzeci pierwiastek tego wielomianu.\(x=-4\) lub \(x=-3\) lub \(x=3\)Wyznacz równanie symetralnej odcinka o końcach \(A = (-2,2)\) i \(B = (2,10)\).\(y=-\frac{1}{2}x+6\)W trójkącie \(ABC\) poprowadzono dwusieczne kątów \(A\) i \(B\). Dwusieczne te przecinają się w punkcie \(P\). Uzasadnij, że kąt \(APB\) jest zbioru liczb \(\{1, 2, 3, 4, 5, 6, 7\}\) losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia \(A\), polegającego na wylosowaniu liczb, których iloczyn jest podzielny przez \(6\).\(P(A)=\frac{17}{49}\)Ciąg \((9, x, 19)\) jest arytmetyczny, a ciąg \((x, 42, y, z)\) jest geometryczny. Oblicz \(x\), \(y\) oraz \(z\).\(x=14\), \(y=126\), \(z=378\)W graniastosłupie prawidłowym czworokątnym \(ABCDEFGH\) przekątna \(AC\) podstawy ma długość \(4\). Kąt \(ACE\) jest równy \(60^\circ\). Oblicz objętość ostrosłupa \(ABCDE\) przedstawionego na poniższym rysunku. \(V=\frac{32\sqrt{3}}{3}\)Miasto \(A\) i miasto \(B\) łączy linia kolejowa długości \(210\) km. Średnia prędkość pociągu pospiesznego na tej trasie jest o \(24\) km/h większa od średniej prędkości pociągu osobowego. Pociąg pospieszny pokonuje tę trasę o \(1\) godzinę krócej niż pociąg osobowy. Oblicz czas pokonania tej drogi przez pociąg pospieszny.\(t=2{,}5\) h

matura maj 2012 zad 28